
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

How to Assess the Health of Open Source Software dependencies in an
Organization’s Intake Process: Insights from an Interview-survey and Case Study

JOHAN LINÅKER, RISE Research Institutes of Sweden, Sweden

THOMAS OLSSON, Robert Bosch AB, Sweden

EFI PAPATHEOCHAROUS, RISE Research Institutes of Sweden, Sweden

Motivation: The increasing reliance on Open Source Software (OSS) in organizational supply chains necessitates robust mechanisms
to ensure the long-term viability and maintenance of these projects. Assessing OSS project health is complex due to the wide range
of socio-technical factors involved. Aim: This study aims to develop a comprehensive framework for characterizing and assessing
the health of OSS projects in the context of organizational intake processes. Method: We conducted an interview survey with 17
industry experts and a case study at a large international automotive manufacturer to synthesize a health assessment framework, and
evaluate its practical application. Results: The study identified five key areas of OSS health: community productivity and stability,
orchestration, production processes, and outputs. These areas encompass 21 health aspects with 71 connected attributes in total. The
case study demonstrated the framework’s utility in creating a tailored health assessment process for the organization. Conclusion:
The proposed framework provides a valuable tool for organizations to take proactive sourcing decisions and address potential issues
in OSS projects early on. By diagnosing symptoms early and applying necessary treatments, organizations can mitigate risks and
ensure the long-term viability of their OSS dependencies, thereby enhancing software stability and reliability.

CCS Concepts: • Software and its engineering → Software development methods; Open source model.

Additional Key Words and Phrases: Open Source Software, Software Ecosystem, Health, Sustainability, Software Quality.

ACM Reference Format:
Johan Linåker, Thomas Olsson, and Efi Papatheocharous. 2018. How to Assess the Health of Open Source Software dependencies
in an Organization’s Intake Process: Insights from an Interview-survey and Case Study. In . ACM, New York, NY, USA, 31 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The presence and significance of Open Source Software (OSS) in organizations’ supply chains, products, and services are
indisputable and ever-growing [8, 14, 41]. By extension, so is the dependence on the OSS project’s ability to stay viable
and maintained long-term without interruption or weakening, also referred to as the OSS project health [11, 21]. Threats
to the health of an OSS project may come in many shapes and forms. Toxicity [43] and non-inclusive culture [31],
non-responsive communication [40], and lack of documentation [4] may prevent the on-boarding of new contributors.
Burn-out or change of interest may cause maintainers to shift away from the OSS project [25]. Projects maintained by
only a few individuals may risk becoming abandoned by consequence or have bugs and vulnerabilities emerge [41].

In earlier review work, we show how OSS project health is a wide topic, identifying 107 health aspects ranging across
the socio-technical spectra of the OSS communities’ peer-production processes, its orchestration and governance, and

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0001-9851-1404
HTTPS://ORCID.ORG/0000-0002-2933-1925
HTTPS://ORCID.ORG/0000-0002-5157-8131
https://doi.org/XXXXXXX.XXXXXXX


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

the software and other deliverables coming out of production process [21]. The health aspects could further be viewed
from a project-centric or on the interconnected ecosystem level of abstraction [24].

The review further shows that extant research, including tools and models, does not provide a comprehensive
overview, neither on the ecosystem nor project-centric level. The wide set of potential metrics does, however, pose
a challenge for anyone to leverage in a health assessment of an OSS project. In this study, we continue on our path
exploring how the health of an OSS project can be assessed, aiming to synthesize and prioritize a comprehensive
yet distilled set of health aspects from which organizations aiming to set up a health assessment process can draw from.
We specifically look at the context of an organization’s intake process of OSS, where they evaluate and monitor OSS
components adopted or considered for adoption in products and operations.

Building upon the reporting in literature [21], we turn to the practitioner side and empirically explore the problem
domain. We report the outputs from a semi-structured interview survey of 17 experts from the industry and OSS
ecosystem on what aspects they consider important and how these aspects can be further characterized from their
experience and point of view. Findings are synthesized into a health assessment framework, including five areas of
health aspects that need consideration, including the OSS community’s productivity and stability, its orchestration,
and the production process and output. Across the five areas, 21 health aspects were identified along with a total of 72
attributes that further help to characterize the different health aspects.

We consider the customization of the evaluation process pivotal as each organization may experience different
risks and challenges and, thereby, needs based on the context (e.g., industry, market, technology) they operate within.
Our framework and its underpinning data should hence be considered as a source of design knowledge [32] for the
tailoring and implementation of the assessment process in the concerned organization. We specifically note that not all
OSS projects can be assessed and compared equally and identify four project traits that should be considered before
assessing the health of an OSS project, including its life-cycle stage, complexity, governance concentration, and strategic
importance for concerned organizations.

To evaluate the use of the framework in the problem context, we perform a case study at a large international
automotive manufacturer with high OSS dependencies present. Health attributes were narrowed down further to a
questionnaire through a focus group and evaluated through four user observations where company developers applied
the questionnaire to OSS projects of internal interest and discussed its potential implementation in practice. A candidate
process is designed and proposed based on the context and needs of the case company.

Our study, accordingly, provides practitioners with a health assessment framework and guidance for how this can be
applied to set up up a health assessment process internally. Such a process, much as going to a medical doctor, can
help an organization to proactively identify potential symptoms, make conclusions of potential issues, and apply the
necessary treatments early on to minimize or remove potential risks and harmful impact.

The rest of the paper is structured as follows. In Section2, we discuss related work on OSS quality models and health
assessment motivating the gap and positioning of our work. Our research design spanning over two cycles is presented
in further detail in Section 3. The health assessment framework is presented in detail in Section 4, followed by the
presentation of how it may be applied in practice through our case study in Section 5. In Section 6, we discuss project
traits that may impact how OSS projects should be assessed and compared. This is followed in Section 7 by a discussion
on the limitations and how threats to validity are managed. Finally, the main conclusions of the study are summarized
and presented in Section 8.

2



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

2 RELATEDWORK

Below, we first provide an overview of related work on OSS health assessment based on our earlier literature survey of
146 publications [21]. Second, we explain and motivate the scope of our study, and how it addresses a gap in research
contrasted through the related work.

2.1 OSS health assessment

Evaluation of OSS projects’ quality aspects is thoroughly addressed with several early contributions generally character-
ized as quantitative means of aggregating technical metrics to arrive at a sourcing decision [27, 35, 42, 47]. Petrinja and
Succi, e.g., propose the QualiPSo Open Source Maturity Model (OMM) based on the more general Capability Maturity
Model Integration (CMMI) [27]. They focus specifically on analyzing the development process and evaluating the OMM
through desk research on six OSS projects.

Some works focus less on metric definition and specifically on tool development and automation. Goeminne and
Mens developed a tool for analyzing the developer activity across OSS projects within a wider ecosystem [10]. The tool is
evaluated through an empirical case study of the GNOME OSS ecosystem. In an underpinning and earlier work, authors
developed an automated tool for visualization and analysis of OSS project health leveraging metrics identified through
the FLOSSMetrics.org project [9]. Samoladas et al. selected a set of common source code metrics through literature and
developed the SQO-OSS quality model and an automated analysis tool for applying the model to OSS projects [35].
In more recent work, Gonzalez-Barahona et al. present a new generation of toolsets emerging that supports software
development analytics, OSS included from the perspectives of companies, developers, and OSS foundations [12].

Certain works have a more explicit focus on the empirical investigation of OSS projects and their ecosystems, using
OSS health as a lens of analysis. Kabbedijk and Jansen, e.g., perform an empirical investigation of the Ruby ecosystem
and its large set of OSS projects (gems) [15]. They use a set of code and social media centrality metrics to analyze the
activity and collaboration across the projects. Ververs et al. empirically investigate the Debian community to identify
factors that promote developer participation in the development [45]. Gamalielsson et al. quantitatively investigate the
Nagios OSS project’s health using social network centrality metrics [7]. They look specifically at both individuals and
service providers. Oriol et al. developed a tool, OSS-CARE [26], that implements a number of key health indicators from
the Queso quality model [6], such as activeness, by aggregating individual metrics, such as a number of contributors and
open bugs. The tool focuses specifically on an ecosystem level, considering multiple OSS projects integrated, further
illustrated by their evaluation of the Eclipse Foundation’s rich set of OSS projects.

Several works have taken an ecosystem perspective on health, stemming from the natural ecosystem analogy. Wang et
al., e.g., designed an algorithm using a natural ecosystem analogy and developing related indicators through a grounded
theory investigation of literature [46]. Carvalho developed a framework for health evaluation of software ecosystems
(not specific for OSS) [3]. Fifty-eight metrics were collected from four previous studies and operationalized through
automated tool-support. The framework is evaluated through desk research on a scientific software ecosystem. Van
Lingen et al. present a framework with health indicators based on related work to evaluate the health of three Content
management software ecosystems [44]. The indicators are evaluated using either computation, manual inspection, or a
survey of community participants.

There has also been work focused on developing metrics and more or less comprehensive support on the project
level. Liao et al. propose a model for predicting the OSS project health using GitHub data [18]. Valiev et al. empirically
investigated a series of metrics through a mixed-methods investigation of the PyPi OSS ecosystem. Qiu et al. [30]

3



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

elicited health indicators by surveying maintainers and operationalized the indicators in a dashboard. The dashboard is
focused on displaying social aspects of the community development efforts, thereby raising awareness and providing
guidance for the maintainers to improve their health accordingly. Guzani et al. also developed a dashboard aimed at
maintainers presenting metrics for improving attraction and retention of newcomers [13]. Singh et al. [38] focus on the
community aspects, developing an assessment framework for ranking and comparing communities using the "Order of
Preference by Similarity to Ideal Solution from Multi-Criteria Decision-Making toolkit." The framework is developed
based on GitHub data and validated through the application on nine OSS projects, which are compared and contrasted
in terms of their community health. Poth et al. developed an automated tool-support labeled Open Source Quality Radar
(OSQR) to be used by development teams within the Volkswagen Group IT for self-selection of OSS components. The
tools extract data from GitHub based on a set of metrics related to community, code quality, and issue management,
which was derived from internal experts.

Finally, extant work has taken several perspectives in the development and application of OSS health metrics.
Shaikh and Levina investigate the potential for growing and building alliances and business relations through OSS
communities [37]. Li et al. [17], Adewumi et al. [1], and Spinelli [39] in turn focus on factors to consider before sourcing
a specific OSS component, similar to Poth et al. [29]. Butler et al. look at factors that can improve internal capabilities
to consume OSS [2]. Guizani et al. [13] and Qiu et al. [30] take the maintainers’ perspective on how they can monitor
and improve the health of their projects.

2.2 Study motivation and gap analysis

In contrast to related work, our study and contribution stand out in several ways. For example, our proposed health
assessment framework is not limited to considering either the ecosystem or project level of analysis, quantitative over
qualitative metrics, or focused on designing automated tooling before deriving empirically grounded metrics. The
empirical investigation by Van Lingen represents an exception but is, however, more focused on investigating the
problem context and less on designing a solution proposal [44]. The notable work by Qiu et al. [30] and Guizani et
al. [13] provides an empirically grounded dashboard and support for health monitoring. These are, however, developed
primarily from the maintainers’ perspective, while our focus is on the organizational intake and dependency monitoring
perspective.

Poth et al. developed a tool for quantitatively analyzing the health of OSS projects for the internal teams of Volkswagen
Group IT to use when sourcing OSS components [29]. While taking the organizational intake perspective similar to
our study (and others [17, 39]), they focus primarily on developing tool-support for the quantitative evaluation and
less on qualitative metrics. Our study further considers the additional use case of enabling the analysis of existing OSS
dependencies, also from the organizational perspective. An additional general limitation among related work is that
any empirical validation of proposed models or tools beyond desktop research of smaller samples of OSS projects is
limited. In our study, we perform a case study at a large international automotive manufacturer and consumer of OSS
to evaluate and demonstrate the applicability of our proposed assessment framework.

3 RESEARCH DESIGN

This study adopts a design science research approach [32] as visualized in Fig. 1, building upon our prior research where
we explored the literature to find out how the health of an OSS project may be assessed [21]. The literature survey
provided a first design cycle during which we investigated the problem context and outlined an initial framework of
107 health aspects. In this study, we continue the design process in addressing our main research question of how the

4



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 1. Overview of the research process spanning over three design cycles. Building on prior work from cycle 1 [21], this study
presents the outputs from cycles 2 and 3, constituted by an interview survey and case study, respectively.

health of an OSS project can be assessed. A health assessment framework is, therefore, presented and iteratively
improved, along with a health assessment process illustrating how the framework may be applied in a real-world
context.

We started with an interview survey with experienced practitioners (cycle 2, see Fig. 1) to further validate, extend,
and contextualize the aspects previously identified. The revised framework rendered in five areas with a total of 21
health aspects, each covering a particular part of OSS project health that can cause issues with consequences for the

OSS project, its community, and end-users. For each aspect, we elicit attributes help to break down and enable the

analysis of a concerned aspect in regards to an OSS project. The framework provides design knowledge for organizations
to draw from when designing and implementing their own health assessment processes, both from a sourcing and
dependency-management perspective.

To evaluate and demonstrate the applicability of the framework, we perform a case study in cycle 3, investigating
the potential implementation at a case company. The process started with a focus group where participants in groups
prioritized aspects and related attributes most important in their context and practice. A questionnaire was generated,
including the concerned aspects and attributes, and then evaluated through a set of user observations where participants
from the focus group individually applied the questionnaire to evaluate the health of the OSS project of their choice. A
final version of the questionnaire was transferred to the case company for further implementation into their internal
development processes. Below, we present the research approach in further detail.

3.1 Interview Survey

Interviewees were sampled from two groups. The first group focused on a specific case company, which included experts
from program management, cybersecurity, tools- and infrastructure, and product engineering. This sampling was
motivated by the fact that we wanted to get a comprehensive view of the aspects from a confined context. By sampling
interviewees from different parts of a case company, we could get complementary perspectives of aspects that were
considered important for the case company at large. Interviewees were identified through snowball recommendation
from our first interviewee, the open source program manager, until interviewees and we considered that all relevant
views of the company had been captured.

Our second group of interviewees consisted of general experts with 10+ years of professional experience in working
with OSS from a community or company perspective, either on a technical or strategic level. All interviewees also
confirmed that they had repeated experience in analyzing the health of OSS projects, although based on their personal

5



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

experience and rationale. Interviewees were identified through industry networks, including the Linux Foundation
and the CHAOSS community. Our intention was to improve the generalizability of our interview survey, although we
acknowledge the limitations that come with our qualitative approach and limited overall interview sample. Interviewees
were added until saturation could be noted. In total, 17 interviews were conducted, of which five were from the first
group sample and 12 from the second (see table 1).

Table 1. Overview of the interviewees, the sample they belong to (case or general), their title, type of organization they represent, and
a brief motivation for their relevance for the study.

ID Sample Title Type of Organization Relevance for project

I1 Case Open Source Program
Officer, Company’s
OSPO

Automotive manufac-
turer

Responsible for OSS operations of the case
company and 20+ years of working within
the OSS ecosystem.

I2 General Head of Research and
Data Science

Data analytics Responsible for the research and develop-
ment of product features related to OSS
health analytics.

I3 Case Lead architect within
software development
tools

Automotive manufac-
turer

Oversees the sourcing, adoption, and integra-
tion of OSS in the area of software develop-
ment tools.

I4 Case Senior IT Security Ar-
chitect

Automotive manufac-
turer

Responsible for processes and practices re-
lated to internal security reviews, including
OSS.

I5 General Expert engineer Manufacturer of embed-
ded software devices

Internal advocate and expert on OSS devel-
opment and processes. Maintainer of several
OSS projects.

I6 General Director of Sales Data analytics Manages products and services focused on
OSS health analytics. Has a PhD. degree on
the topic.

I7 General Open Source Program
Officer, Company’s
OSPO

Car manufacturer Responsible for the OSS program within the
organization. Has long experience working
with OSS strategically.

I8 General Senior Manager, OSPO OSS-based service and
product provider

Responsible for community outreach and
metrics programs, including the development,
training, and implementation of Health met-
rics.

I9 General Research Analyst, Com-
pany’s OSPO

Cloud services Supporting implementation of health metrics
internally and engaging in external collabo-
rations on their development.

6



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

I10 General Open Source Manager,
Company’s OSPO

Telecom infrastructure Responsible for the introduction of OSS secu-
rity practices inside the company and exter-
nally engaged in OSS Security communities
developing best practices on the topic.

I11 General Consultant Independent Former senior manager of OSS operations
in large OSS-based service providers. Long-
term experience of OSS community growth
and business.

I12 General CEO Data analytics Manages products and services focused on
OSS health analytics. Has a PhD. degree on a
related topic.

I13 General Director of Commu-
nity and Developer
Relations

Cloud-based Database
service provider

Engaged in several community initiatives re-
lated to OSS health metrics, with leadership
experience from OSS foundations.

I14 Case Senior Solutions Archi-
tect

Automotive manufac-
ture

Responsible for the introduction and harmo-
nization of Security practices among devel-
opment teams.

I15 Case Security Engineer Automotive manufac-
ture

Experience in security evaluation and sourc-
ing of OSS components for current and pre-
vious employers.

I16 General Open Source Manager,
Company’s OSPO

Infrastructure software
for cloud services

Responsible for implementing metrics inside
the company and engaging in external devel-
opment. Has a Ph.D. on an adjacent topic.

I17 General Open Source Program
Manager, Company’s
OSPO

Online Audio platform Responsible for implementing metrics inside
the company and adopting security practices.

A semi-structured approach was adopted, where interviewees were asked open questions in terms of how they would
characterize a healthy OSS project, provided our definition. The open question was asked repeatedly through the two
dimensions of the framework derived from literature [21]. After being allowed initial open reasoning, the interviewee
was asked to reflect specifically on each related aspect within the specific dimension that had not yet been touched
upon.

Each interview lasted for about 60 minutes and was conducted by the first and second authors. The first author
facilitated the interviews, while the second author took notes. The interviews were conducted remotely via an online
video platform, recorded, and automatically transcribed. Transcriptions were manually processed and structured by the
second author. Interviewees were provided with a copy of the transcript with the option to correct, add, or retract any
statement.

The transcripts were coded separately by both the first and second author using the health aspects identified by our
previous literature review as an a-priori code book, also known as structural coding [34]. Each paragraph could be

7



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

assigned multiple codes (simultaneous coding [34]) within or across different themes (i.e., health aspects), enabling
analysis of co-occurrences and contextual understanding of the individual codes.

Both authors made personal notes attached to each coded paragraph to summarize the main points and capture initial
reflections. Both authors made four synchronizations where codes identified codes were discussed per paragraph until
agreement was made. The number of disputes was reduced to only minor variations in the last round. No inter-coder
agreement was calculated as all 17 interviews were dually coded and synchronized.

The first author walked through the coded paragraph per each of the codes and synthesized observations from
the interview statement and the first and second authors’ previous notes. Codes with two (N=12), one (N=21), or no
mentions (N=29) were excluded from the analysis, which resulted in a total of N=54 codes from the revised a-priori code
book (N=117). The open coding was discussed iteratively with the second author throughout the process. The codes
were then axially coded and synthesized within each of the 21 health aspects, which were further synthesized in five
overarching areas through selective coding. In section 4, the final codes are presented as attributes per health aspect
along with a brief description capturing the perspectives highlighted by the interviewees. The codebook is published
and accessible as part of the supplementary material to this paper [20].

3.2 Case study: Implementation at a Case Company

The case company is a large international automotive manufacturer with 50,000+ employees. They use OSS both on
board the automotives in a safety-critical environment, in the cloud for enabling connected services, and in the internal
development and infrastructure environment.

3.2.1 Focus Group. The focus group included 16 participants from a broader team focusing on developing and main-
taining the internal tools and infrastructure for software development, testing, and building pipelines. The first author
facilitated the focus group, which lasted for two hours. Participants were first provided with a background on the study
and a top-level description of the framework as elicited from the interview survey. Participants were then divided into
three groups where they first had to prioritize the top five most important health aspects (as presented in section 4)
and motivate why (hand-outs available in the supplementary material [20]). In the second step, groups were asked to
prioritize the most important attribute per aspect (also as presented in section 4). Finally, they were asked to discuss
their general thoughts about the health check process, and how it can be implemented into the current development
processes, and what the barriers might be.

Each group made their own notes, which were collected by the first author. After the group discussions, the whole
group openly discussed the top prioritized health aspects and related attributes, concrete examples of where a health
check process would have been needed in the past, and how such a process could look in practice. Following the
focus group, the first author made further notes summarizing the open discussion of the focus group. The participants’
priorities were cross-compiled, resulting in a new and briefer version of the health assessment framework compared to
the general version elicited from the interview survey. The new version was member-checked with the manager of the
team (I1), who also attended the focus group.

3.2.2 User observations. A set of four user observation sessions was performed where users were sampled from the
team attending the focus group and from the product development teams inside the case company. Sampling was
performed in collaboration with the manager (I1) of the team who attended the focus group. Selection criteria included
a general familiarity with OSS development practices, and an OSS project in particular that was to be evaluated.

8



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 2. Overview of the health assessment framework, including its 21 health aspects divided across five areas, that help to characterize
the health of an OSS project. Each aspect has related attributes (not visualized) that help to characterize the aspect.

Observation sessions lasted between 60-120 minutes and were managed and recorded over an online videoconferenc-
ing platform. The first author of this study facilitated the sessions. Each session was initiated with an overview of the
research project, the scope and purpose of the session, and the revised framework that came out of the focus group
prioritization. Following this, the user provided a background and connection to the OSS project to be evaluated. The
user then performed the evaluation based on the attributes identified from the focus group, which had been formalized
in a questionnaire (see supplementary material [20]). The user was then asked to evaluate each attribute from the
questionnaire based on their own experience and by using the online resources and information on the OSS project
available at hand.

The first author, facilitating the evaluation, took notes continuously and kept an observational role throughout
the evaluation, providing clarifications when needed, but did not direct or guide the user in any way to minimize the
introduction of researcher bias. After each evaluation, the questionnaire was revised to improve clarity and context.
Each evaluation was then synthesized as a case that exemplifies and provides context for how the framework and its
attributes may be applied and evaluated differently for different projects.

4 THE HEALTH ASSESSMENT FRAMEWORK

Below, we present the synthesized output from our qualitative interview survey and case study in the form of a health
assessment framework (see Fig. 2). The framework consists of 21 aspects, each covering a particular part of OSS project

health that can cause issues with consequences for the OSS project, its community, and end-users. For each aspect, a number
of attributes are defined to help break down and enable the analysis of a concerned aspect in regards to an OSS project.
The health aspects are further ordered into five high-level themes.

9



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

• Community productivity - Aspects describing the pulse and activity that contribute to the collaborative
development of the OSS project.

• Community stability - Aspects describing the robustness and ability of the community to withstand any
interruption or change that may impact its population of maintainers and contributors,

• Orchestration - Aspects related to the governance and coordination mechanisms that enable the development
and collaboration within the OSS community.

• Production process - Aspects of the peer-production process generating the OSS project outputs.
• Production outputs - Aspects describing the quality and comprehensiveness of the OSS project outputs, including

source code and documentation.

See table 2 for an overview of the framework, including the concerned areas, aspects, and attributes.

Table 2. Overview of the health assessment framework elicited from the interview survey, including its 21 health aspects.

Aspect Description

Community productivity

Social activity The activity from the OSS project’s community and maintainers both in online
channels and physically.

Responsiveness The time to a response from the maintainers and community towards, e.g.,
discussions, pull requests, or issues.

External visibility Visibility of the OSS project to an audience outside the community of individuals
actively engaged in the project.

Development activity The overall development activity by the community, including the many tech-
nical aspects and deliverables of the OSS project.

Development efficiency The effectiveness and ease of the maintainers and contributors of an OSS project
in managing and moving the development forward.

Community stability

Adoption Usage and technical adoption of the OSS project as a dependency in downstream
software projects and by end-users.

Organizational diversity The diversity of organizationswithin anOSS community in terms of governance,
contribution, and adoption of the underpinning project.

Demographical diversity The individual level of the maintainer and contributors to an OSS project in
gender, race, time zone, language, and cultural aspects.

Discussion climate The discussion climate in the community in regard to sentiment, tone, and
manner in answers, messages, and general communication within the OSS
project, as well as how potential conflicts are managed.

Knowledge concentration The concentration or distribution of contributions and knowledge to specific
individuals or groupings within an OSS project (also referred to as the bus or
truck factor).

10



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

Contributor turnover The attraction, retention, and attrition of maintainers and contributors to an
OSS project.

Financial sustainability The financial situation of maintainers and contributors of OSS projects and
whether it enables sustainable and dedicated time for maintenance of the
projects.

Orchestration

Governance structure The explicitness, formality, and general recognition of the ecosystem’s gover-
nance structure and leadership.

Openness To what extent the OSS project is welcoming to and accepting contributions
and considering new ideas and general input and influence on the project’s
development from existing and new contributors

Licenses License-related aspects and processes of managing and distributing the intel-
lectual property maintained by the OSS project.

Production process

Development process The presence and quality of development processes are seen by multiple inter-
viewees as an important marker of a mature and sustainable OSS project.

Release management The release process should describe the governance and planning of how re-
leases are made and at what cadence

Security management The implementation and management of proactive and reactive measures to
prevent and address security concerns of the OSS project.

Scaffolding The availability and quality of the development and communication infrastruc-
ture used in the OSS project.

Production output

Documentation The presence and quality of documentation for the OSS project considering
different stakeholders’ perspectives, including developers and end-users.

Technical quality The technical quality of the OSS and its source code, e.g., in terms of its archi-
tecture, source code, and other quality attributes.

4.1 Community Productivity

4.1.1 Social Activity. Concerns about the activity from the OSS project’s community and maintainers both in online
channels and physically offline (e.g., I5 and I11). Online, the activity can be in the shape of posts, discussions, and
interactions in mailing lists, issue trackers, or the community’s own social media channels. Offline, the activity may be
in the form of dedicated conferences, hackathons, and meetups or contributions to such events but with a more general
focus.

Beyond the focal OSS project under investigation, the presence of social communication with upstream and down-
stream projects was also stressed (I6C1). For libraries, it is mostly important to have active relationships with downstream
users. For end-user-facing projects, relationships with upstream projects are important (I6C4).

11



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

Social activity is seen as a sign of healthy development and a social pulse of the OSS project. It may also provide a
proxy for the popularity of a project, which by many interviewees was considered an ambiguous yet essential aspect of
a project (e.g., I6 and I12).

The view on social activity varies through the life cycle stages of a project (I11). In the early phases, growth signals
are important, e.g., through activity in communication and visibility on public events. A decline phase may be noted
when the communication and technical activity slows down, although this can also be sign of a project that is stabilizing
why additional aspects should be consulted.

Attributes:

A1 The OSS project’s communication with up- and downstream projects, e.g., in reporting and assisting on the
discussion of relevant issues (I6C1)

A2 The OSS project’s activity on its communication channels, e.g., mailing lists, issue trackers, or social media.
A3 The OSS project’s offline activity through arranging and participating in events, e.g., conferences, hackathons,

and meetups.
A4 The social activity of the maintainers in contrast to the remaining community on the OSS project’s communica-

tion channels, e.g., mailing lists, issue trackers, or social media.

4.1.2 Responsiveness. Responsiveness concerns the time to respond from the maintainers and community towards,
e.g., discussions, pull requests, or issues (e.g., I2 and I8). The type of response depends on the medium and may, e.g.,
include an answer to a question, a code review of a pull request, or the prioritization or closing of an issue. Security-
and vulnerability-related topics and issues were highlighted as necessary in terms of responsiveness due to their critical
nature (e.g., I1 and I9). Some see responsiveness as a proxy for the availability of the maintainers, their workload, and
the size and activity of the community in general (I2). By extension, the aspect is a sign of a community’s productivity.
Long lead times can signal bottlenecks in the community (I12), that the project has been abandoned or is in the process
of becoming. The aspect may vary depending on the life-cycle stage (I8), yet should still be short, as responsiveness to
vulnerabilities is essential regardless of whether a project is in its growth or stability phase. Accordingly, observing the
responsiveness over time is important to catch any negative trends early on.

Attributes:

A1 The timeliness and quality of responses to, e.g., new discussion questions, pull requests, or issues (e.g., I5 and
I17).

A2 The responsiveness specifically in terms of security-related discussions, pull requests, or issues (e.g., I1 and I10).
A3 The responsiveness of the maintainer in contrast to the rest of the community (e.g., I1 and I2).

4.1.3 External Visibility. Visibility of the OSS project to an audience outside the community of individuals actively
engaged in the project. Simple signs of appreciation or attention of individuals, such as stars or followers, as well as
reporting on external events, social media, forums, and news, are some potential indicators (I11C4 and I6C12).

Increased visibility can be a sign of increased external interest, which in turn can provide a foundation for, e.g.,
increased attraction of contributors, and chances for securing sponsorships (I6C11). However, it may not necessarily be
a sign of increased adoption or development. Hence, as with many other aspects it needs to be consider in the context
of complementary metrics to, e.g., gain an understanding of a project’s popularity.

Visibility can be expected to vary across the life cycle of an OSS project (I11C4) related to a "hype" or new release of
a project. Low overall visibility can be a sign of demise, but the project is also feature complete, i.e., stable, which is

12



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

not necessarily negative (I13C7). Complementary metrics are hence needed to define where the life cycle of a project
resides before considering this aspect in detail.

Attributes:

A1 The reporting of the project in external events, social media, forums, and news (I11C4 and I6C12).
A2 The project’s external visibility signaled through various popularity indicators, e.g., stars and followers on

GitHub (I12C22), or downloads from the package manager (I8C25).

4.1.4 Development Activity. Concerns the overall development activity by the community, including the many technical
aspects and deliverables of the OSS project. Both code and non-code contributions should be considered (e.g., I6C27 and
I16C18), although the latter may be more difficult to measure (I6C27). These may, e.g., be directed to the code base,
documentation, peer-review and quality assurance process, or release management process.

The development activity is considered one of the more critical aspects by interviewees, signaling that support can
potentially be provided if something were to go wrong (I3C9). I5C3 and I11C6 highlight that it should be considered
with other aspects, such as social activity, to get an overall pulse of the OSS project. Looking at the activity historically,
one can also guess how it may look onward (e.g., I7C2 and I13C10).

The development activity should be analyzed both on the project as a whole and in terms of its potentially different
submodules or parts. A low or declining activity may be a sign of an unmaintained (orphan) code (I12C13). I16 further
adds the importance of considering the activity in relation to the quality of the work, e.g., in terms of source code and
documentation.

Another perspective provided by several interviewees is that the development activity should be put in relation
to the number of maintainers and contributors doing the actual work. The ratio, tying into the aspect of knowledge
concentration, can give further hints on how the workload distribution looks. Ideally, the project should have activity
from both the maintainers and contributors (long-term and episodic) (I16C18).

Attributes:

A1 The contribution activity to the code base over time, e.g., last 45, 90, and 365 days.
A2 The activity in development-related activities, such as code reviews, merging of PRs, and actions on issues over

equal periods of time.
A3 The activity in contributions to non-code tasks, e.g., documentation, test cases, and release management activities

over equal periods of time (e.g., I10C17 and I6C27).
A4 The different types of activities in contrast between the maintainer(s), long-term contributors, and drive-by

contributors (I9C4).

4.1.5 Development Efficiency. Concerns the effectiveness and ease of the maintainers and contributors of an OSS
project in managing and moving the development forward. E.g., in terms of addressing, reviewing, merging, and closing
pull requests, as well as performing regular and timely releases.

Development efficiency relates to the responsiveness in the communication of the OSS projects but speaks to the
progression and productivity of the development (I9C27). Hence, it should be contrasted to the development activity,
which describes the pulse of the general development, and less about the quality and productivity of the development
(I16C18).

13



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

A growing backlog of unaddressed issues or PRs, or a growing ratio of those addressed, can be a bad sign, raising
the question of whether the community can manage the workload (I15C3). The efficiency should, therefore, also be
contrasted against, e.g., the knowledge concentration to get further perspective on the work distribution.

Cadence and consistency in terms of releases and updates is regarded as an important feature of a stable project (e.g.,
I16C18 and I17C12). Timeliness is especially highlighted for security-related issues and solutions, from how they are
managed to being released (e.g., I5C12 and I15C3), which can signal how the project prioritizes its work.

Attributes:

A1 The size and evolution of the project’s backlog in terms of open and unresolved issues (I12C16).
A2 The pace in how issues are being addressed and closed and PRs merged (I5C25).
A3 The corresponding responsiveness towards bugs and security-related issues and PRs (e.g., I5C12 and I15C3).
A4 The cadence and timeliness at which releases are made and planned (e.g., I1 and I17).

4.2 Community Stability

4.2.1 Adoption. Usage and technical adoption of the OSS project as a dependency in downstream software projects
and by end-users is considered by several interviewees as an important marker for a healthy project (e.g., I16C7 and
I3C7). Presence of actors in the community (I11C5), recorded dependencies (I5C7), and other popularity indicators
(I12C22) may provide different signs of adoption.

Interviewees highlight that several metrics would be needed to get a fair understanding of the adoption as it is
considered difficult to put a number on (I2C33). Also, several interviewees highlight that the technical adoption will
vary pending the life cycle stage of the project (e.g., I11C5 and I16C5).

Adoption among larger organizations considered a positive sign in terms of quality and that they may be motivated
to act if a vulnerability would be introduced (e.g., I5C7).

Attributes:

A1 The diversity of individuals and organizations represented in the project’s various communication channels
and ongoing development (I11C5).

A2 The adoption of the project by other downstream projects (I5C7).
A3 The project’s adoption signaled through various popularity indicators, e.g., stars and followers on GitHub

(I12C22), or downloads from the package manager (I8C25).

4.2.2 Organizational Diversity. The diversity of organizations within an OSS community in terms of governance,
contribution, and adoption of the underpinning project. Some potential metrics highlighted are the distribution of
governance positions (I1C21) or the relative size of contributions between actors (I9C20).

A commonly perceived risk in OSS projects with low organizational diversity in terms of contribution and governance
is that the project may depend on the agenda of a limited number of organizations and that influence and contributions
from other actors could be improved (e.g., I5C6 and I6C3). E.g., explicitly when the project is part of a single-vendor
business model or implicitly when the number of maintainers or contributors from one organization is significantly
larger than other actors. Two potential implications are a change of license or a drop of support for the project (e.g.,
I17C15 and I16C11).

Attributes:

A1 The diversity of organizations represented in the governance of the project and its distribution of positions, e.g.,
in governance and technical steering committees (I1C21).

14



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

A2 The diversity of organizations represented by the individuals contributing to the project and the distribution of
contributions among them (I9C20).

A3 The diversity of organizations represented among the outspoken users of the project (I5C6).

4.2.3 Demographic Diversity. Demographic diversity looks at the individual level of the maintainer and contributors
to an OSS project in terms of gender, race, time zone, language, and cultural aspects (e.g., I9C23 and I12C20). It may
include both online in the social activity and development of the OSS project (I13C19) and offline at physical events
related to the project (I6C10).

The importance is raised by many interviewees who consider demographical diversity as crucial for open culture
and quality of development due to the different perspectives (e.g., I16C14). Stability and productivity are also implied by
the broader exposure and adoption, and by extension, a large surface area for contributions (I11C2). One interviewee
raised the Fedora OSS project as an example of a highly diverse project in terms of contributions despite mainly being
driven by Red Hat (I11C2).

The aspect is, however, also considered difficult to measure practically online due to the general anonymity of a
community (I6C10) and the sensitive and ethical nature of collecting such information (I9C24). Measuring diversity at
physical events and larger formal organizations (such as foundations) is considered more accessible (I6C10).

Attributes:

A1 Reports in terms of diversity produced on the project considering, e.g., gender, race, time zone, language, and
cultural aspects (I9C24).

A2 The turnout at physical events arranged by the project? (I6C10).

4.2.4 Discussion Climate. Regards the discussion climate in the community in regard to sentiment, tone, and manner
in answers, messages, and general communication within the OSS project, and how potential conflicts are managed.
Examples include rudeness, deliberate misunderstandings, and closing of issues without reason (I1C32).

Many interviewees consider the presence of toxicity and heated discussions as markers for an unhealthy community
that will have a negative impact on both the attraction and retention of contributors (e.g., I5C13 and I9C17). The
discussion climate should rather be friendly, constructive, and welcoming to create an inclusive environment, increasing
the potential attraction and retention rates of contributors. Toxicity needs to be identified upfront and managed
proactively (I9C25), typically by introducing and enforcing a code of conduct and setting up a governance structure
that can manage conflicts in a structured way (I8C11).

The character of the discussion climate in a community is considered difficult to measure beyond observing the
dialogues taking place and the potential presence of a code of conduct (I17C24).

Attributes:

A1 The overall sentiment, tone, and manner in answers, messages, and general communication within the OSS
project and how it is reflected in the documentation (I1C32).

A2 Use of slang, irony, or idiomatic expressions in technical discussions.
A3 Presence of conflicts, and how they are managed (I11C8).
A4 Presence of a code-of-conduct, and a governance and process for implementing it (I8C11).

4.2.5 Knowledge Concentration. Concerns the concentration or distribution of contributions and knowledge to specific
individuals or groupings within an OSS project. The aspect is typically described in terms of, e.g., bus or truck factor,
meaning the number of people that have to abandon the project for it to go dormant (e.g., I2C7 and I8C6). One

15



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

interviewee suggests looking at the number of individuals making up certain amounts (e.g., 50 or 80 percent) of the
contributions to a project (I14C18). The knowledge concentration can further regard the project as a whole and its parts
or modules. One interviewee refers to the latter as an orphan code (I12C13), i.e., an unmaintained part of a larger OSS
project. Concentration of knowledge is also important to capture in terms of who is resolving bug reports or failing
builds, tasks not necessarily done by the contributors (I6C15).

In the inception phase of a project, the knowledge concentration is typically limited to one or a very few individuals
but may also remain valid for later phases of a project’s life-cycle (e.g., I2C18 and I8C9).

A low level of knowledge concentration may indicate a higher risk of maintainer burnout as the burden can grow
overwhelming if, e.g., questions, feature requests, and code reviews increase disproportionally to the amount of time
available from the maintainer(s) (I2C22). Financial sustainability for the maintainer becomes a more critical factor for
these projects, as well as the quality, e.g., of documentation that may enable others to take over if needed (I1C39).

One interviewee highlights that there are higher chances that the project may survive if it’s in the confinement of a
foundation or larger ecosystem (I6C3). A related factor concerns the amount and diversity of users and downstream
projects, which decreases the potential risks related to a low knowledge concentration (I8C20). The size and complexity
of a project and its strategic importance affect how companies value the risk associated with the low knowledge
concentration (e.g., I16C4 and I17C12).

Attributes:

A1 The number of individuals doing most of the development in the project (i.e., bus factor), e.g., in terms of 50 and
80 percent (I14C18), and the corresponding number for organizations (i.e., elephant factor).

A2 Presence of any submodules or parts in the project with a low bus or elephant factor, also referred to as orphan
code (I12C13).

A3 The corresponding bus and elephant factors in terms of who maintenance tasks beyond code contributions, e.g.,
resolving issues, performing code reviews, or resolving build failures.

4.2.6 Contributor Turnover. Contributor turnover regards the attraction, retention, and attrition of maintainers and
contributors to an OSS project. This also includes episodic volunteers who leave after one or a limited number of
contributions.

The turnover is seen by many of the interviewees (e.g., I6C25 and I9C16) as a key aspect describing the stability and
resilience of an OSS project. Episodic volunteers specifically are seen from different perspectives. On one side, they
are considered to add to the load of the maintainer without contributing to the long-term sustainability of the project
(I9C12 and I6C26). Still, it provides a signal that there is interest in the project and that it is receptable to contributions
(I2C33).

Retaining the episodic volunteers to stay on as long-term contributors and potentially maintainers is further
considered a challenge and a narrow funnel, yet a key sign for an attractive and inclusive community (I9C15 and I13C13).
On the opposite, if the attrition rate is greater than the attraction and retention, i.e., when there is a negative turnover,
companies should be vary of the stability of the concerned project. Turnover can, however, also be a good sign in terms
of maintainers as it signals an organic growth in the community, that governance is not locked-in (I13C13).

Attributes:

A1 The number of new contributors attracted to the community over time, e.g., last 45, 90, and 365 days (e.g.,
I6C26).

16



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

A2 The number of new contributors that have made recurrent contributions and, to some extent, been retained to
the community over the same periods.

A3 The turnover of maintainers, long-term contributors, and individuals in central governance positions in the
project (I13C13).

4.2.7 Financial Sustainability. Regards the financial situation of maintainers and contributors of OSS projects and
whether it enables sustainable and dedicated time for maintenance of the projects. It may concern whether maintainers
and contributors are employed, have a personal business set up, or receive sponsorships (I6C14).

There is a general sense among interviewees that financial sustainability among the maintainers of a project
is a positive sign (I5C17). This implies that they can work professionally with the maintenance while potentially
promoting better work-life balance. However, it may also be seen as a risk if the continued maintenance or the attraction
of contributions is dependent on, e.g., reoccurring one-time sponsorships (I1C36). Commercial backing, i.e., when
individuals are employed and representing larger organizations, is further seen as a positive sign (I11C18) but should be
seen in contrast to the organization’s agendas and the openness for collaboration and contributions if they are in a
central position of the project’s governance (I2C15).

Attributes:

A1 The extent maintainers in any way are paid or sponsored to work professionally on maintaining the project,
and how (I1C37).

A2 The extent of employed contributors that engage in the project and how financially solid their employers are
(e.g., I11C18 and I16C20).

4.3 Orchestration

4.3.1 Governance Structure. Concerns the explicitness, formality, and general recognition of the ecosystem’s governance
structure and leadership.

Governance and code-of-conduct are considered critical criteria for a healthy OSS project (e.g., I8C23 and I9C17) and
for proactively managing and minimizing conflicts and toxicity, which by extension, may lead to people abandoning
the project. Some interviewees (e.g., I1C20 and I9C14) specifically raise the aspect of having rules in place for how
maintainership is regulated, distributed, and transitioned when a maintainer leaves a project. Regulations and processes
should further be documented and openly available (I5C19) but continuously revised actively to stay up-to-date (I13C14).

An OSS project’s complexity and stage in its life-cycle heavily impact the requirements and needs for formality
in terms of a project’s governance (I1C18). In a small project or the early stages, less rigor is considered acceptable,
and concentrated leadership is the focus of development and agility (I8C23). As the project grows and increases in
complexity, more mature governance is preferred by companies that ensure a neutral space for collaboration and
provide means of settling disputes and agreeing on a common agenda (e.g., I5C20 and I11C14), considered especially
important in cases where there are conflicting business incentives present (I10C13). I9C18 highlights with reference
to the Kubernetes project that an efficient governance structure should enable a decentralized development where
decisions are taken at a level as low as possible.

Governance is, however, considered difficult to measure quantitatively, although one may look for the presence of
specific paragraphs or types of documents, such as a code of conduct (I2C23 and I8C23).

Attributes:

A1 Presence of a code-of-conduct and governance and process for how it is enforced project (e.g., I8C23 and I9C17).
17



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

A2 Presence of rules for how maintainership is regulated, distributed, and transitioned when a maintainer leaves a
project (e.g., I1C20 and I9C14).

A3 Presence, availability, and up-to-date documentation of governance in terms of how decisions are made and
conflicts managed, by whom, and how they are elected (I5C19 and I13C14).

A4 Maturity of the governance of the project compared to its current size and life-cycle stage (I1C18).

4.3.2 Openness. Regards to what extent the OSS project is welcoming to and accepting contributions and considering
new ideas and general input and influence on the project’s development from existing and new contributors (e.g., I1C34
and I2C7).

Openness is considered a significant factor for projects deemed strategically essential and where the governance and
ownership are centered on one (or a limited number of) organization(s). One interviewee describes how their engineers
typically enter a discussion with an OSS project about the ability to influence and the potential implementation of
specific use cases (I17C16).

The openness is also considered crucial for the potential of a vibrant community which is an enabler for many of
the benefits that OSS may bring (I16C14). The opposite imposes a negative culture that can impact the attraction and
retention of people in the community.

Attributes:

A1 The openness for external contributions (I1C34).
A2 The extent contributions beyond maintainers and long-term contributors are accepted, e.g., from episodic

volunteers (I2C25).
A3 Presence of an onboarding process and general support for newcomers for engaging and contributing to the

project (I5C22).

4.3.3 Licenses. Concerns license-related aspects and processes of managing and distributing the intellectual property
maintained by the OSS project.

Many interviewees highlight that a copyleft license may have a negative impact on company participation (e.g.,
I10C25 and I13C5). Factors such as license compatibility and flexibility with different business models are, however,
highlighted as impacting factors (I12C23). The presence of a CLA may also impact the contribution process by adding
friction, inhibiting contributions (I6C22), and raising the risk of license changes if there is a corporate entity driving the
project (I17C17). However, some interviewees diverge in that it can both be a sign of maturity (e.g., I10C26 and I17C17).
Export control may be another issue that can restrict or inhibit adoption from companies (I13C11).

From a commercial user perspective, the trustworthiness of the source of the OSS project in terms of its license
compliance and correctness and how it may be verified with data from other sources (e.g., license databases) is specifically
highlighted (I1C23). Depending on the business criticality of the project, a company has different requirements. For
less critical projects, trusting the community and potentially performing a manual inspection in the hosting platform
may be enough. For more critical OSS used in products, metadata may not be trusted, warranting scans and thorough
compliance reviews (I1C24). Should the project reside within a more professional setting, such as a foundation, trust
will probably be higher (I1C25).

Attributes:

A1 The types of OSS licenses the project is published under (e.g., I10C25 and I13C5).
A2 Presence of a Contributor License Agreement (I6C22), to whom the copyrights are transferred to (I17C17).

18



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

A3 Presence and quality of necessary legal information, e.g., in terms of included licenses and export control
information (I13C11).

A4 Presence of a process for managing licenses and copyright within the OSS project.

4.4 Production Process

4.4.1 Development Process. The presence and quality of development processes are seen by multiple interviewees
as an important marker of a mature and sustainable OSS project (e.g., I12C27 and I2C20). Each OSS project may be
expected to have different ways of working, so it is important to consider the differences (I2C28). The development
process encompasses multiple parts, including requirements engineering, design, implementation, testing, and release
management.

The requirements engineering process should describe how new and existing requirements are managed (I1C45),
e.g., through an issue tracker, how these are discussed and prioritized, and planned for, both in releases and on the
more forward looking roadmap.

The development process should further provide guidance on how development is performed, including a contribution
process describing how contributions are made and managed (e.g., I2C20 and I13C16). A process entailing how
newcomers to a project can start to engage in the project is also highlighted among several interviewees (e.g., I1C35
and I13C21). The use of modern infrastructure for developing the OSS is a sign of process maturity and up-to-date in
terms of modern ways of working (e.g., I1C55 and I16C21). Automated testing, CI/CD, and automatic scanning tools are
highlighted examples (e.g., I5C24 and I6C15).

Attributes:

A1 Process for how requirements are identified, discussed, prioritized, and planned (I1C45).
A2 Process describing how contributions should be made and how these are managed (e.g., I2C20 and I13C16).
A3 Process for onboarding newcomers to the project, e.g., in terms of joining discussions and making contributions

(e.g., I1C35 and I13C21).
A4 Process and infrastructure for quality assurance of the project, both continuously and per release (I9C27).

4.4.2 Release Management. The release process should describe the governance and planning of how releases are made
and at what cadence. Handling security and bug fixes is of extra importance (e.g., I2C26 and I16C6). Releases should be
clearly described and documented, including impacting dependencies (I14C12).

Attributes:

A1 The structure and transparency of the software release process (e.g., I1C42 and I14C12).
A2 The type of format releases are packaged in and whether they are signed with PGP appropriately (I1C40).
A3 Process for managing breaking changes (I2C26).
A4 The quality of releases, e.g., in terms of build quality and documentation (I14C15).
A5 The cadence and consistency of releases (e.g., I14C17 and I17C22).

4.4.3 Security Management. Software security is a pivotal area for all types of software (I11C17). One interviewee
considers it difficult to predict the risk for vulnerabilities and that many vulnerabilities may be a good sign, just like
none as a community might be good at identifying new ones (I2C30). Yet, the number of past and present vulnerabilities
and the responsiveness in how these were resolved are highlighted by several interviewees as important numbers to

19



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

consider (e.g., I10C21 and I1C30). Two interviewees note that it is important for users to be aware of their risk appetite
(I13C10) and the level of trust that they put into concerned OSS projects (I3C19).

The dependencies are another important aspect to consider. If a project depends on a lot of other upstream projects,
the risk increases for vulnerabilities being imported (I16C8). The presence of vulnerabilities in dependencies is, therefore,
also a potential red flag that should be scanned for (I15C3). However, this is considered by many interviewees as a
difficult and costly procedure, especially in relation to how thorough and far up the dependency tree one wants to go
(e.g., I16C9 and I1C16). One interviewee highlights the importance of observing which ecosystem a project belongs to,
as each works differently in terms of how releases and dependencies are managed (I2C5). In NPM, e.g., one is dependent
on each project to update, while In Maven, you can brute force updates.

Security practices are important for all types of OSS projects (e.g., I17C7 and I5C27), including smaller ones, as these
can often have central positions in dependency networks, allowing potential vulnerabilities to propagate widely in
supply chains (I1C22). One interviewee notes that smaller projects might not have as many security updates as larger
projects, implying that they can have different security practices without it being a problem for the health of the project
(I16C3). Regardless, there should always be a strict review and quality assurance process in place for PRs before being
merged into the project code base (I10C16).

Processes should further be in place and transparently documented regarding how vulnerabilities are reported,
discussed, managed, disclosed, and communicated (e.g., I1C51 and I10C15). Contact details should be openly disclosed
for reporting and discussion of security-related information (I14C9). Adopting best practices as suggested by industry
best practice programs such as those of the Open Source Security Foundation is also highlighted (I6C17), including
measures such as enabling multi factor authorization (I4C6), and running automated security and vulnerability scanning
(I16C22).

Attributes:

A1 The presence of vulnerabilities that have been reported, e.g., during the last 1, 3, and 12 months, and at what
rate have these been addressed (e.g., I10C21 and I1C30).

A2 The corresponding presence in upstream dependencies of the focal OSS project (I15C3).
A3 The review and quality assurance practices for pull requests to the OSS project (I10C16).
A4 Processes for how vulnerabilities are reported, discussed, managed, disclosed, and communicated by the OSS

project (e.g., I1C51 and I10C15).
A5 Adoption of the best practices suggested by the Open Source Security Foundation (I6C17), such as enabling

multi-factor authorization (I4C6) and running automated security and vulnerability scanning (I16C22).
A6 Security and release management processes in the ecosystem that the focal OSS project resides in (I2C5).

4.4.4 Scaffolding. Scaffolding concerns the availability and quality of the development and communication infrastruc-
ture used in the OSS project. The presence and use of CI/CD, as well as test automation, were especially highlighted as
important markers of technical quality (e.g., I10C14 and I15C8). One interviewee describes how it creates trust in the
quality assurance practices of the community (I13C16). The presence of code scanning tools, e.g., for static component
analysis and fuzzy testing, and the presence of vulnerabilities (e.g., I6C16 and I16C22) were highlighted as markers of a
more mature project, not to be expected of projects in earlier life-cycle stages.

Attributes:

A1 Presence of a functioning CI/CD pipeline (e.g., I10C14 and I15C8), its process, and maintenance of it.
A2 Presence of a functioning test automation (I13C16), and the test coverage of the project.

20



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

A3 Use of any type of scanning tools, e.g., for static component analysis, fuzzy testing, and presence of vulnerabilities
(e.g., I6C16 and I16C22).

4.5 Production Output

4.5.1 Documentation. Documentation is considered critical among many of the interviewees, both from a developer
(I10C22) and user perspective. It enables the capture, persistence, and dissemination of knowledge among the existing
community as well as newcomers. It is not something that is always prioritized (e.g., I1C45 and I13C17) and should
cover both deliverables and processes. Deliverables include source code, release notes, and export control (e.g., I15C11
and I1C43), while typical processes and process-related artifacts may include onboarding, contribution guidelines,
requirements planning and roadmap, training, and FAQs (I13C17).

General quality attributes of the documentation, including its availability, correctness, and completeness, were
further highlighted (e.g., I6C21 and I3C22). Accessibility was also raised in terms of enabling the visually impaired,
different screen sizes, and mental structure of the text (I6C21). Such aspects may require a manual inspection to evaluate,
although some quantitative metrics may be used, such as its revision history, when measuring development activity.

Attributes:

A1 The technical documentation of deliverables, including source code and releases, e.g., in terms of completeness,
up-to-date, correctness, and accessibility.

A2 The process-related documentation, e.g., related to the development process, and governance structure, e.g., in
terms of completeness, up-to-date, correctness, and accessibility.

A3 The onboarding documentation for enabling newcomers to engage with the OSS project, e.g., in terms of
completeness, up-to-date, correctness, and accessibility.

4.5.2 Technical Quality. Concerns the technical quality of the OSS and its source code, e.g., in terms of its architecture,
source code, and other quality attributes. Several interviewees highlight readability, clean code, and general adherence
to common coding conventions as important markers (e.g., I15C9 and I17C5). A user needs to be able to understand the
code and be able to build on top of it (I3C21). The architecture should further be investigated if it makes logical sense
(I1C53) and preferably has a modularized structure that is easy to extend and add to (I6C23). The presence of circular
dependencies, or different versions of the same project/package, is also highlighted as something to look for (I1C50).

Attributes:

A1 The readability and adherence to common coding conventions of the source code (e.g., I15C9 and I17C5).
A2 The logic and appropriateness of the OSS project’s architecture (I1C53) and whether it has a modular structure

(I6C23).
A3 Presence of circular dependencies, or to different versions of the same project/package (I1C50).

5 CASE STUDY: IMPLEMENTATION AT A CASE COMPANY

The health assessment framework (see Fig. 2) provides a knowledge base for organizations to pick-up and learn from
when evaluating an OSS project’s health. In cycle 3, we are specifically interested in the use case of an organization’s
intake process of OSS, including sourcing new OSS dependencies and monitoring those already running in products
and operations.

We conducted a case study at an international automotive manufacturer to evaluate how the framework could be
used in practice and support the implementation of health assessment in the intake process. The case company is a

21



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

Fig. 3. Overview of the health assessment process, part of an organization’s overarching intake process for OSS components.

partner in this study’s overarching research project. A process design and questionnaire for health assessment was
designed iteratively based on interviews of domain experts within the organization as part of the interview survey (I1,
I3-4, I14-15), complemented with a follow-up focus group and user observations where the questionnaire was applied
and evaluated.

The process, as visualized in Fig. 3, is typically triggered (1) by a developer identifying an OSS component and
candidate for inclusion as a dependency in the organization’s products and operations. If the component meets initial
functional requirements, the developer performs a manual inspection (2) using a standardized questionnaire with
questions identified as necessary based on the health assessment framework. For the case company, a condensed list of
health aspects and metrics (see table 3) were prioritized through the focus group and user observations.

Tool-support should be developed and leveraged to support the developer is answering the questions and identify
any health issues. Existing tooling from the CHAOSS project was discussed as potential candidates to start from 1.
The development of the tool-support should iteratively help to refine the questionnaire. The goal is to keep a manual
inspection between 15 and 60 minutes, depending on the complexity of the OSS component. The time aspect was raised
as a critical aspect in focus groups and user observations as time is already limited, and the cost for adding additional
burden cannot be too high as it will then be de-prioritized and potentially avoided.

Based on the evaluation, the developer will make a triage decision including the three options:

• If the component is considered healthy, the component is included.
• If the component shows health-issues that are manageable, the component is included but with a treatment

designed and implemented to address any issues identified.
• If the component shows health-issues that are not manageable, the component is excluded, and the search will

continue for an alternative component (8).

For option number two, the treatment (3) should be designed based on the health issues identified. The health
assessment framework along with the underpinning literature identified in earlier work [21] can provide input, along

1https://chaoss.community/software/

22



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

with best practice established in industry and the OSS community2. Interviewees highlighted that suitable treatments
should be designed and documented iteratively and connected to the different questions asked in the health assessment.
The definition of suitable treatments is, however, beyond the scope of this study.

For OSS included as dependencies (4) to the organization’s products and operations, a quantitative analysis is run
continuously (5), e.g., as part of the internal continuous integration, delivery, and deployment pipeline. The analysis
should align with the questionnaire and be based on the health assessment framework but exclude aspects that can
only be determined qualitatively. The tool-support developed for the manual inspection should preferably be reused,
automated, and integrated into an internal notification system that alerts developers responsible for the component
when indicators are passed above-identified thresholds (6).

Interviewees note that the inspection is potentially best performed by individuals with context knowledge and
experience of the OSS component as this will help to interpret any health issues indicated by the quantitative analysis.
The developer assigned to the manual inspection reiterate the inspection (7) focused on the areas identified by the
quantitative analysis and enter the triage stage as described above.

Several interviewees both in the case company and in the general sample highlight that the health of an OSS project
cannot be generalized by numbers. Hence, it is important as further raised that developers are continuously trained in
how to apply the questionnaire and tool-support for the manual inspection. There must be an understanding of what
the different questions mean, why they are asked, and how the answers can be interpreted, both in isolation and in
combination.

Participants both from the focus groups and user observations raise the need for knowledge sharing and collective
learning on OSS health and what it can imply. Iterative workshops and retrospects where developers can share their
assessments, gain feedback and discuss is proposed as a key part. Standardized training modules and local champions
who may provide points of contact are also emphasized.

A third point regards the persisting of health assessments in an organization-wide repository where developers
across different units and departments can gain insights into how a project has evolved, both from the eyes of manual
inspections and from the continuous monitoring of the quantitative analysis. Such records will also enable follow-up
on the OSS project’s evolution and help provide an understanding of how certain health issues have emerged and how
they potentially should be treated.

Table 3. Overview of questions and attributes identified and prioritized by the case company to be used for manual inspections in the
health assessment as part of the organization’s overarching intake process of OSS components. Specific comments included from the
focus group participants.

Community productivity - Development activity

A1: The contribution activity to the code base over time, e.g., last 45, 90, and 365 days.
A2: The activity in development-related activities, such as code-reviews, merging of PRs, and actions
on issues over equal periods of time.
General note: “Important because we need to know if the software is being worked on and is up-to date.

Indicates that we will likely have future and current support.”

Community productivity - Responsiveness

2E.g., https://github.com/ossf/scorecard, https://chaoss.community/, https://standard.publiccode.net/
23

https://github.com/ossf/scorecard
https://chaoss.community/
https://standard.publiccode.net/


1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

A1: The timeliness and quality of responses to, e.g., new discussions questions, pull requests, or issues.
General note: The group emphasizes the importance to consider both the social coding platform where
a project is hosted, and also external platforms such as StackOverflow where project-related questions
may be asked.

Community stability - Adoption

A3: The project’s adoption signaled through various popularity indicators, e.g., stars and followers on
GitHub, or downloads from the package manager.
General note: The group notes that “More people and good scores means more activity (bug reports/fixes,

acceptance, security findings, etc.)”.

Orchestration - Licenses

A3: Presence and quality of necessary legal information, e.g., in terms of included licenses, and export
control information.
General note: “Indicates that legal factors have been taken into consideration”.

Orchestration - Governance structure

A3: Presence, availability, and up-to-date documentation of governance in terms of how decisions are
made, and conflicts managed, by whom, and how they are elected.

Production processes - Security management

A1: The presence of vulnerabilities that has been reported, e.g., during the last 1, 3 and 12 months, and
at what rate has these been addressed.
General note: “Shows that we can be confident that bugs are being reported/fixed and builds trust in our

usage of it.”

A4: Processes for how vulnerabilities are reported, discussed, managed, disclosed, and communicated
by the OSS project (e.g., I1C51 and I10C15).
A5: Adopted of the best practices suggested by the Open Source Security Foundation such as enabling
multi factor authorization, and running automated security and vulnerability scanning.
General note: “How do you trust that the Open Source is secure? You can scan the Open Source for security

vulnerabilities using, e.g., Dynamic or static analysis”.

Production processes - Development process

A4: Process and infrastructure for quality assurance of the project, both continuously, and per release.

Production processes - Release management

A1: The structure and transparency of the software release process.

Production output - Documentation

A1: The technical documentation of deliverables, including source code and releases, e.g., in terms of
completeness, up-to-date, correctness, and accessibility.

24



1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

“This means that we can utilize the project in the way it is intended to be used. Removes/reduces guess-work

as well as less misconfigurations.”

Production output - Technical quality

A1: The readability, and adherence to common coding conventions of the source code.
A2: The logic and appropriateness of the OSS project’s architecture (I1C53), and whether it has a
modular structure.
“Evaluate 1) against our need and guardrails, 2) readability and understandability, and 3) use of proper

structure and coding rules (naming convention, code linting etc.)”

6 ANALYSIS: CAN ALL TYPES OF OSS PROJECTS BE ASSESSED AND COMPARED EQUALLY?

Fig. 4. Four OSS project traits that impact how OSS projects should be assessed and compared in terms of their health.

Analyzing the health of an OSS project is a complex task. In our interviews with practitioners, we synthesize and
narrow down 21 aspects, where different attributes can be applied to further characterize the concerned health aspect.
By extension, we cannot talk about OSS project health as one thing. Rather, there can be a number of potential health
issues for OSS projects, just as for living beings. By noting symptoms and asking informed questions, these health
issues may be identified, and suitable treatments may be prescribed.

However, aspects identified in our framework may not necessarily be evaluated equally across all types of OSS
projects. As put by I10, ". . . you first need to classify what type of project you have at hand and then, based on that

type of project, you can factor this into the risk analysis". Accordingly, just as living beings have different conditions,
traits, and personalities, so do OSS projects and their communities. Through our study, we noted certain traits as
especially influencing how the different aspects potentially should be applied, specifically the life-cycle, complexity,
and governance concentration of the OSS project and its strategic importance to the organization analyzing the project
as part of its intake process (see Fig. 4).

Our proposed health framework does not consider these traits in detail. Such a mapping between the traits and how
they impact each of the proposed health aspects requires a study of its own and, therefore, a topic for future research
warranting both qualitative and quantitative investigations. Our understanding from practice and the research process
for this study, is that numbers can only provide a subset of an answer, and will require contextual understanding and
experience to translate into a nuanced problem understanding, and actionable insights.

For the moment, however, we strongly recommend practitioners aiming to adopt the presented health assessment
framework to only comparing OSS projects with similar traits (e.g., complexity and life-cycle stage) and prioritizing
and defining relevant aspects and attributes based on internal needs and risk appetite. The traits that are identified in
our interviews are discussed further below.

25



1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

6.1 Life-Cycle Stage

Determining what stage in a life-cycle a project resides in is in itself not an easy task. According to interviewees, the
stage connects to (among other things) age, popularity, activity, and maturity. Yet it is difficult to generalize about any
exact correlations. On the other hand, there is a wealth of literature attempting to classify [4, 36], and predict the life
cycle evolution[5, 16, 19, 23, 28, 48]. Considering the interviewees, we observed four potential stages for an OSS project:
1) inception, 2) growth, 3) stabilization, and 4) decline.

The inception phase covers the initiation and early evolution of a project. Some projects may see a lot of traction and
rapid development from a small core team and few or no drive-by contributors, while others will emerge at a slower
pace. I11 stresses the importance of growth signals, e.g., in terms of technical and social activity. Interviewees also
highlight that expectations on certain aspects, such as governance in younger projects, should not be as high as for
more mature projects. In part because there may not be a need for it and in part because the focus is on development.

In a growth phase, the project continues to mature, both technically and socially. I2 and I8, e.g., highlight that
there will probably be more open issues than closed as popularity continues to grow, and community takes shape.
Contribution process starts to emerge, along with general development and governance processes. The latter will be
needed to stakeholders with different agendas to find common ground and settle disputes (I11).

In the stabilization phase, the level of activity lowers, as does the number of new feature implementations. For
projects in this phase, one should not expect active development but, e.g., require documentation to be up to date (I9)
and some level of responsiveness still (I12). A stable project will likely still have releases and updates, at least in terms
of security fixes either internally or upstream dependencies, whereas a dormant project likely will not (I16). Also, the
importance of knowledge concentration to a limited number of individuals may be less than in previous phases (I8), yet
with higher requirements on whether there are resources in place to enable others to take over the project should it go
dormant (I3).

In the decline phase, activity is limited to non-existent impacting the quality and relevance of the OSS. The project
may still solve a problem and be used but overtaken by another project (I2), which is also a good sign (I11). However,
determining between if a project is stable or in decline can be tricky (I3) as limited or absent activity can also be due to
feature completeness (I7).

Future work, should specifically look to how health aspects fluctuate and interrelate throughout the different life
cycles. The priority of health aspects to consider, and acceptance criteria will potentially also fluctuate, and in need of
investigation.

6.2 Project Complexity

The project complexity regards the scope, size, and technical complexity of the codebase maintained by the OSS project.
For example, comparing Kubernetes with a smaller NPM JavaScript component will most likely render in different
questions, and acceptance criteria.

Smaller projects with limited scope imply lesser requirements on maturity in governance as these projects need
agility and speed. Too much governance can add friction (I11). In more complex projects, there will be a need for
more mature governance processes to facilitate collaboration between, e.g., companies with different agendas. Also,
as highlighted by I16, development processes may need to be more mature, e.g., in managing security issues. Yet, the
quality of the security process is as essential as for complex projects. I1 believes that less complex projects can become
more critical as vulnerabilities can propagate more widely through these in software supply chains unnoticed.

26



1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

The view on knowledge concentration is also dependent on project complexity to a certain extent, where a small
number of maintainers may be acceptable if the project is less complex. I16 explains the lesser requirements are because
less complex projects are typically easier to replace. I16 and I3C further describe how some may assume in general that
more complex projects are healthy by default, exemplified through Kubernetes and the Linux kernel OSS projects.

While our interviews highlighted scope, size, and technical complexity of the codebase, there may likely be other
project complexities to consider when assessing the health of OSS project. Future work should explore what project
complexities are considered relevant, both from a practitioners perspective, and quantitatively through mining software
repository research.

6.3 Governance Concentration

This category concerns the concentration of governance and its impact on the project’s openness to input and external
influence on decisions and transparency of discussions with individuals and corporations engaged or with interest in
the OSS project.

Companies see risk when an OSS project is governed by a single entity (e.g., leveraging a single-vendor OSS business
model) (I9), both in terms of potential license changes to more restrictive versions and potential changes in the technical
direction of development not in line with the overall community (I10). The active collection and transfer of copyright
from contributors to a single entity through a Contributor License Agreement may be a warning sign (I17). Further,
it may increase the knowledge concentration of the project, increasing the risk of the project going dormant if the
company were to pivot and abandon the project (I11).

If a project belongs to a foundation, it is better prepared to care for its sustainability if contributors leave (e.g., I10
and I16). However, even though a project is under a foundation, one must look at the distribution of seats and power
(I9), as the project can still be dominated by one or a few powerful actors (I13). The diversity of companies performing
most of the contributions (e.g., 50 or 80 percent) can be an indicator metric to consider (I10), also referred to as the
elephant factor by I9. If contributions are rather diverse, it may indicate an openness, which is why a concentrated
governance structure may be an acceptable risk (e.g., I10 and I17). I13 further highlights that there should be a turnover
of people in central positions; otherwise, dependence and lock-in to specific individuals are enforced.

I1, e.g., considers governance setups with Pay-to-play as a specific warning flag, i.e., sponsorship is required to get
a seat at the table. Governance should preferably be open with influence based on technical merit, with companies’
businesses kept separate from the technical development of the OSS (I6).

Future work should look into characterize the different examples of OSS projects with concentrated governance,
and investigate how governance has propagated. There are several examples of single-vendor OSS projects, e.g., in
the database space, that can serve as potential cases. In these, the vendor has transitioned from OSS to what may be
referred to as source available and non-compete licenses. The effect these licence changes has in reality, and under
what conditions should be clarified. Also, to what extent extant health aspects and attributes can be applied, and what
can be acceptable thresholds.

6.4 Strategic Importance

OSS projects considered critical for an organization’s business imply a lower risk appetite, implying stricter requirements
of the concerned health aspects. Business criticality is a factor of both the strategic importance of the project and how
easily it is to replace (I3). Smaller and less strategic projects should preferably have alternative solutions available with a
low barrier to entry. I5 and I7 both highlight the case where products they ship, including embedded software, need to be

27



1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

maintained for the foreseeable future; why the same or corresponding requirements for internally developed software
also need to apply for the OSS included in the products? Proactive health-improving measures may be motivated to
secure the sustainability of concerned OSS (e.g., I7 and I8).

Considering the actor-perspective, financial support and stability of the project and its main supporting actors
are considered pivotal (I2), including, e.g., the maintainer(s), contributors, and hosting OSS foundation. The need
for the trustworthiness of the individuals in the project further increases, as does the organizational diversity of the
project. Specifically, for projects with a low governance and knowledge concentration, there is a need for a high level of
openness for external contributions and influence (e.g., I4 and I7). On the technical side, requirements also increase on
the maturity and quality of, e.g., documentation, development processes, and security practices (e.g., I3 and I4).

While interviewees agree the strategic importance impact, determining the strategic importance is left in the mist.
Future work should explore how such assessment can be made, e.g., from the business and technical perspectives [22].
The business model perspective can provide a potential lens in analysing how the OSS project is leveraged in the value
creation and capture process.

7 LIMITATIONS AND THREATS TO VALIDITY

To discuss the limitations and threats to validity, we use the criteria defined by Runeson and Höst [33]; construct validity,
internal validity, external validity, and reliability.

Construct validity concerns whether what was investigated was actually what the research had in mind. To guide
our research, we have taken points from our earlier work and review of OSS health aspects in the literature and
used established definitions of health in the planning and execution of our study. Interviewees were introduced to
our definition and asked open questions related to the dimensions of the previously reported version of our health
framework. In the analysis, transcripts were coded by the two first authors and discussed continuously to reach an
agreement. Member checking was also thoroughly performed with all interviewees and study participants, both in
cycles 2 and 3 of our research.

Internal validity considers whether external factors may have influenced the object under investigation. In terms
of OSS project health, this may provide a significant threat as OSS health is a very complex construct, as illustrated in
our earlier and present work [21]. We, therefore, urge readers to take specific care in the translation and application
of our results in a real-world context. Multiple aspects need to be considered in combination together with the risk
appetite of the organization. The experience of the individual performing a health assessment will also impact the
analysis. Per our case study and the elicited assessment process, we, therefore, recommend that training, peer review,
and knowledge sharing be adopted as cornerstones within any organization aiming to establish a health assessment
component in their OSS intake process.

External validity considers the generalizability and transferability of the findings to other cases and contexts beyond
what has been studied. As we note in Section 6, aspects and attributes that are considered relevant and acceptance
criteria for these attributes will differ depending on the type of project. Four factors we identified from the interviews
include the OSS project’s life cycle stage, complexity and governance concentration, as well as strategic importance
for the organization doing the health assessment. How these factors (and potential others) impact what aspects to
investigate, what acceptance criteria to apply, and in what combinations or order is a comprehensive topic for future
research. Until then, we recommend organizations aiming to adopt the health assessment framework to compare
projects of equal complexity, type, life-cycle stage, etc., and to prioritize aspects and attributes similar to the case study
presented in Section 5.

28



1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

Reliability regards the replicability and transparency of the research method applied in the study. We have
maintained an audit trail from transcriptions and throughout the coding process. The code book is published in the
supplementary material along with the questionnaire and focus group material used in the case study to further enable
replicability and transparency in our research process [20].

8 CONCLUSIONS

The dependence on OSS is ever-growing among organizations today, and accordingly, there is also the need for the OSS
projects to stay healthy, i.e., the long-term and viable maintenance of the projects without interruption or weakening
in their level of quality. Continuous assessment and monitoring of the health of OSS components used or considered
for adoption is, therefore, a critical practice for these organizations to ensure the robustness and reliability of their
software systems.

Our study presents a health assessment framework for organizations to implement in their intake processes for
new or adopted OSS components. The framework highlights five key areas of health: community productivity and
stability, orchestration, production processes, and outputs. These areas encompass 21 health aspects, each covering a
particular part of the OSS project health that can cause issues with consequences for the OSS project, its community,
and end-users. For each aspect, a number of attributes are defined to help break down and enable the analysis of a
concerned aspect in regard to an OSS project.

The customization of the evaluation process is pivotal, as each organization faces unique risks and challenges
based on its specific context, such as industry, market, and technology. Our framework serves as a source of design
knowledge, enabling organizations to tailor and implement an effective health assessment process. The case study at
a large international automotive manufacturer illustrates the practical application of our framework, demonstrating
its utility in narrowing down health attributes to a questionnaire and designing a candidate process suited to the
company’s needs.

When assessing the health of an OSS project, organizations need to be aware of the type and traits of the OSS
project at hand, as these factors may influence how the different health aspects of our proposed framework potentially
should be applied and evaluated. Our interviewees specifically highlight the life-cycle, complexity, and governance
concentration of the OSS project, and its strategic importance to the organization analysing the project as part of its
intake process.

Our proposed health framework does not consider these traits in detail. Such a mapping between the traits and how
they impact each of the proposed health aspects requires a study of its own and, therefore, a topic for future research.
For practitioners aiming to adopt the presented health assessment framework, we firmly recommend only comparing
OSS projects with similar traits (e.g., complexity and life-cycle stage) and prioritizing and defining relevant aspects and
attributes based on internal needs and risk appetite.

Ultimately, this study provides practitioners with a valuable tool for proactively identifying potential issues within OSS
projects, akin to a medical check-up. By diagnosing symptoms early and applying necessary treatments, organizations
can mitigate risks and ensure the long-term viability and security of their OSS dependencies. This proactive approach
not only enhances the stability and reliability of software products but also contributes to the overall sustainability of
the OSS ecosystem.

29



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Linåker et al.

REFERENCES

[1] Adewole Adewumi, Sanjay Misra, Nicholas Omoregbe, and Luis Fernandez Sanz. 2019. FOSSES: Framework for open-source software evaluation
and selection. Software: Practice and Experience 49, 5 (2019), 780–812.

[2] Simon Butler, Jonas Gamalielsson, Björn Lundell, Christoffer Brax, Anders Mattsson, Tomas Gustavsson, Jonas Feist, Bengt Kvarnström, and Erik
Lönroth. 2022. Considerations and challenges for the adoption of open source components in software-intensive businesses. Journal of Systems and
Software 186 (2022), 111152.

[3] Iuri Carvalho, Fernanda Campos, Regina Braga, José Maria N David, Victor Stroelle, and Marco Antônio Araújo. 2017. Heal me-an architecture for
health software ecosystem evaluation. In 2017 IEEE/ACM Joint 5th International Workshop on Software Engineering for Systems-of-Systems and 11th
Workshop on Distributed Software Development, Software Ecosystems and Systems-of-Systems (JSOS). IEEE, 59–65.

[4] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects fail. In Proc. of the 2017 11th Joint meeting on Foundations of
Software Engineering (Paderborn, Germany). ACM, New York, NY, USA, 186–196.

[5] Alexandre Decan, Eleni Constantinou, Tom Mens, and Henrique Rocha. 2020. GAP: Forecasting commit activity in git projects. Journal of Systems
and Software 165 (2020), 110573.

[6] Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. 2014. Queso a quality model for open source software ecosystems. In 2014
9th Int. conf. on Software Engineering and Applications (Vienna, Austria). IEEE, 209–221.

[7] Jonas Gamalielsson, Björn Lundell, and Brian Lings. 2010. The Nagios community: An extended quantitative analysis. In Open Source Software: New
Horizons: 6th International IFIP WG 2.13 Conference on Open Source Systems, OSS 2010, Notre Dame, IN, USA, May 30–June 2, 2010. Proceedings 6.
Springer, 85–96.

[8] GitHub. 2023. Octoverse: The state of open source and rise of AI in 2023. Technical Report. GitHub.
[9] Mathieu Goeminne and Tom Mens. 2010. A framework for analysing and visualising open source software ecosystems. In Proceedings of the

Joint ERCIM Workshop on Software Evolution (EVOL) and International Workshop on Principles of Software Evolution (IWPSE) (Antwerp, Belgium)
(IWPSE-EVOL ’10). Association for Computing Machinery, New York, NY, USA, 42–47. https://doi.org/10.1145/1862372.1862384

[10] Mathieu Goeminne and Tom Mens. 2013. Analyzing ecosystems for open source software developer communities. In Software Ecosystems. Edward
Elgar Publishing, 247–275.

[11] Sean Goggins, Kevin Lumbard, and Matt Germonprez. 2021. Open Source Community Health: Analytical Metrics and Their Corresponding
Narratives. In 2021 IEEE/ACM 4th Int. Workshop on Software Health in Projects, Ecosystems and Communities (Madrid, Spain). ACM, New York, NY,
USA, 25–33.

[12] Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortázar, and Gregorio Robles. 2022. Software Development Metrics With a Purpose. Computer 55, 4
(2022), 66–73. https://doi.org/10.1109/MC.2022.3145680

[13] Mariam Guizani, Thomas Zimmermann, Anita Sarma, and Denae Ford. 2022. Attracting and Retaining OSS Contributors with a Maintainer
Dashboard. In In 44th Int. conf. on Software Engineering: Software Engineering in Society (Pittsburgh, PA, USA). ACM, New York, NY, USA, 5 pages.

[14] Red Hat. 2022. The State of Enterprise Open Source. Technical Report. Red Hat.
[15] Jaap Kabbedijk and Slinger Jansen. 2011. Steering Insight: An Exploration of the Ruby Software Ecosystem. In Software Business, Björn Regnell, Inge

van de Weerd, and Olga De Troyer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 44–55.
[16] Xiaozhou Li, Sergio Moreschini, Fabiano Pecorelli, and Davide Taibi. 2022. OSSARA: Abandonment Risk Assessment for Embedded Open Source

Components. IEEE Software 39, 04 (2022), 48–53.
[17] Xiaozhou Li, Sergio Moreschini, Zheying Zhang, and Davide Taibi. 2022. Exploring factors and metrics to select open source software components

for integration: An empirical study. Journal of Systems and Software 188 (2022), 111255.
[18] Zhifang Liao, Mengjie Yi, Yan Wang, Shengzong Liu, Hui Liu, Yan Zhang, and Yun Zhou. 2019. Healthy or not: A way to predict ecosystem health

in github. Symmetry 11, 2 (2019), 144.
[19] Zhifang Liao, Benhong Zhao, Shengzong Liu, Haozhi Jin, Dayu He, Liu Yang, Yan Zhang, and Jinsong Wu. 2019. A prediction model of the project

life-span in open source software ecosystem. Mobile Networks and Applications 24, 4 (2019), 1382–1391.
[20] Johan Linåker, Tomas Ohlsson, and Efi Papatheocharous. 2024. Online Suppl. Material. https://doi.org/s/69182a009fb401a89dd2
[21] Johan Linåker, Efi Papatheocharous, and Thomas Olsson. 2022. How to characterize the health of an Open Source Software project? A snowball

literature review of an emerging practice. In Proceedings of the 18th International Symposium on Open Collaboration. 1–12.
[22] Johan Linåker, Björn Regnell, and Daniela Damian. 2019. A Community Strategy Framework - How to obtain influence on requirements in

meritocratic open source software communities? Information and Software Technology (2019).
[23] Héctor J Macho and Gregorio Robles. 2013. Preliminary lessons from a software evolution analysis of Moodle. In Proc. of the First Int. conf. on

Technological Ecosystem for Enhancing Multiculturality (Salamanca, Spain). Association for Computing Machinery, New York, NY, USA, 157–161.
[24] Konstantinos Manikas and Klaus Marius Hansen. 2013. Reviewing the health of software ecosystems–a conceptual framework proposal. In Proc. of

the 5th Int. Workshop on Software Ecosystems. Citeseer, 33–44.
[25] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu. 2019. Why do people give up flossing? a study of contributor

disengagement in open source. In IFIP Int. conf. on Open Source Systems (Montreal, QC, Canada). Springer, Cham, 116–129.
[26] Marc Oriol, Carlos Müller, Jordi Marco, Pablo Fernandez, Xavier Franch, and Antonio Ruiz-Cortés. 2023. Comprehensive assessment of open source

software ecosystem health. Internet of Things 22 (2023), 100808.

30

https://doi.org/10.1145/1862372.1862384
https://doi.org/10.1109/MC.2022.3145680
https://doi.org/s/69182a009fb401a89dd2


1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

How to Assess the Health of Open Source Software dependencies in an Organization’s Intake Process: Insights from an Interview-survey and Case StudyConference acronym ’XX, June 03–05, 2018, Woodstock, NY

[27] Etiel Petrinja and Giancarlo Succi. 2012. Assessing the open source development processes using OMM. Advances in Software Engineering 2012
(2012).

[28] Etiel Petrinja and Giancarlo Succi. 2012. Two evolution indicators for FOSS projects. In IFIP Int. conf. on Open Source Systems (Hammamet, Tunisia).
Springer, Cham, 216–232.

[29] Alexander Poth, Dan-Alexander Levien, Olsi Rrjolli, and Matthias Wanjetscheck. 2022. Quality evaluation with the open-source quality-radar for a
sustainable selection and use of FOSS components. In European Conference on Software Process Improvement. Springer, 503–517.

[30] Huilian Sophie Qiu, Anna Lieb, Jennifer Chou, Megan Carneal, Jasmine Mok, Emily Amspoker, Bogdan Vasilescu, and Laura Dabbish. 2023. Climate
Coach: A Dashboard for Open-Source Maintainers to Overview Community Dynamics. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems. 1–18.

[31] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and Bogdan Vasilescu. 2019. Going Farther Together: The Impact of
Social Capital on Sustained Participation in Open Source. In 2019 IEEE/ACM 41st Int. conf. on Software Engineering (Montreal, QC, Canada). IEEE,
688–699.

[32] Per Runeson, Emelie Engström, and Margaret-Anne Storey. 2020. The design science paradigm as a frame for empirical software engineering. In
Contemporary empirical methods in software engineering. Springer, Cham, 127–147.

[33] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case study research in software engineering. Empirical Software
Engineering 14, 2 (2009), 131–164.

[34] Johnny Saldaña. 2021. The coding manual for qualitative researchers. Sage.
[35] Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis, and Ioannis Stamelos. 2008. The SQO-OSS quality model: measurement based open source

software evaluation. In Open Source Development, Communities and Quality: IFIP 20 th World Computer Congress, Working Group 2.3 on Open Source
Software, September 7-10, 2008, Milano, Italy 4. Springer, 237–248.

[36] Carlos Santos, George Kuk, Fabio Kon, and John Pearson. 2013. The attraction of contributors in free and open source software projects. The Journal
of Strategic Information Systems 22, 1 (2013), 26–45.

[37] Maha Shaikh and Natalia Levina. 2019. Selecting an open innovation community as an alliance partner: Looking for healthy communities and
ecosystems. Research Policy 48, 8 (2019), 103766.

[38] Jaswinder Singh, Anu Gupta, and Preet Kanwal. 2023. The vital role of community in open source software development: A framework for
assessment and ranking. Journal of Software: Evolution and Process (2023), e2643.

[39] Diomidis Spinellis. 2019. How to select open source components. Computer 52, 12 (2019), 103–106.
[40] Igor Steinmacher, Marco Gerosa, Tayana U Conte, and David F Redmiles. 2019. Overcoming social barriers when contributing to open source

software projects. Computer Supported Cooperative Work (CSCW) 28, 1 (2019), 247–290.
[41] Synopsis. 2023. 2024 Open Source Security and Risk Analysis Report. Technical Report. Synopsis.
[42] Davide Taibi, Luigi Lavazza, and Sandro Morasca. 2007. OpenBQR: a framework for the assessment of OSS. In Open Source Development, Adoption

and Innovation: IFIP Working Group 2.13 on Open Source Software, June 11–14, 2007, Limerick, Ireland 3. Springer, 173–186.
[43] Parastou Tourani, Yujuan Jiang, and Bram Adams. 2014. Monitoring sentiment in open source mailing lists: exploratory study on the apache

ecosystem. In 24th Annual International conf. on Computer Science and Software Engineering (Markham, ON, Canada), Vol. 14. IBM, 34–44.
[44] Sonny Van Lingen, Adrien Palomba, and Garm Lucassen. 2013. On the software ecosystem health of open source content management systems. In

5th Int. workshop on software ecosystems (iwseco 2013). Citeseer, 38.
[45] Eric Ververs, Rick Van Bommel, and Slinger Jansen. 2011. Influences on developer participation in the debian software ecosystem. In Proceedings of

the International Conference on Management of Emergent Digital EcoSystems. 89–93.
[46] Lei Wang, Jing Wan, and Xinshu Gao. 2019. Toward the Health Measure for Open Source Software Ecosystem Via Projection Pursuit and Real-Coded

Accelerated Genetic. IEEE Access 7 (2019), 87396–87409. https://doi.org/10.1109/ACCESS.2019.2926306
[47] Anthony Wasserman, Murugan Pal, and Christopher Chan. 2006. The business readiness rating model: an evaluation framework for open source. In

Proceedings of the EFOSS Workshop, Como, Italy.
[48] Likang Yin, Zhuangzhi Chen, Qi Xuan, and Vladimir Filkov. 2021. Sustainability Forecasting for Apache Incubator Projects. ACM, New York, NY, USA,

1056–1067.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

31

https://doi.org/10.1109/ACCESS.2019.2926306

	Abstract
	1 Introduction
	2 Related work
	2.1 OSS health assessment
	2.2 Study motivation and gap analysis

	3 Research Design
	3.1 Interview Survey
	3.2 Case study: Implementation at a Case Company

	4 The Health Assessment Framework
	4.1 Community Productivity
	4.2 Community Stability
	4.3 Orchestration
	4.4 Production Process
	4.5 Production Output

	5 Case study: Implementation at a Case Company
	6 Analysis: Can all types of OSS projects be assessed and compared equally?
	6.1 Life-Cycle Stage
	6.2 Project Complexity
	6.3 Governance Concentration
	6.4 Strategic Importance

	7 Limitations and threats to validity
	8 Conclusions
	References

